Search results for "Elementary submodel"

showing 6 items of 6 documents

On closures of discrete sets

2018

The depth of a topological space $X$ ($g(X)$) is defined as the supremum of the cardinalities of closures of discrete subsets of $X$. Solving a problem of Mart\'inez-Ruiz, Ram\'irez-P\'aramo and Romero-Morales, we prove that the cardinal inequality $|X| \leq g(X)^{L(X) \cdot F(X)}$ holds for every Hausdorff space $X$, where $L(X)$ is the Lindel\"of number of $X$ and $F(X)$ is the supremum of the cardinalities of the free sequences in $X$.

CombinatoricsMathematics (miscellaneous)Cardinal invariants Lindelof space Discrete set Elementary submodel CellularityGeneral Topology (math.GN)FOS: MathematicsHausdorff spaceMathematics::General TopologySettore MAT/03 - GeometriaTopological spaceDiscrete setInfimum and supremumMathematics - General TopologyMathematics
researchProduct

Cardinal invariants of cellular Lindelof spaces

2018

A space X is said to be cellular-Lindelof if for every cellular family $$\mathcal {U}$$ there is a Lindelof subspace L of X which meets every element of $$\mathcal {U}$$ . Cellular-Lindelof spaces generalize both Lindelof spaces and spaces with the countable chain condition. Solving questions of Xuan and Song, we prove that every cellular-Lindelof monotonically normal space is Lindelof and that every cellular-Lindelof space with a regular $$G_\delta $$ -diagonal has cardinality at most $$2^\mathfrak {c}$$ . We also prove that every normal cellular-Lindelof first-countable space has cardinality at most continuum under $$2^{<\mathfrak {c}}=\mathfrak {c}$$ and that every normal cellular-Lindel…

Arhangel’skii TheoremMathematics::General MathematicsDiagonalMathematics::General TopologyRank (differential topology)Space (mathematics)01 natural sciencesCombinatoricsCountable chain conditionCardinalityCardinal inequalityLindelöf spaceFOS: MathematicsContinuum (set theory)0101 mathematicsMathematicsMathematics - General TopologyAlgebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Nonlinear Sciences::Cellular Automata and Lattice Gases· Elementary submodel010101 applied mathematicsMonotonically normal spaceMathematics::LogicComputational MathematicsLindelöf spaceCountable chain conditionGeometry and TopologyAnalysis
researchProduct

A note on discrete sets

2009

We give several partial positive answers to a question of Juhasz and Szentmiklossy regarding the minimum number of discrete sets required to cover a compact space. We study the relationship between the size of discrete sets, free sequences and their closures with the cardinality of a Hausdorff space, improving known results in the literature.

dispersion characterelementary submodel.Discrete setEberlein compactfree sequence
researchProduct

On the cardinality of almost discretely Lindelof spaces

2016

A space is said to be almost discretely Lindelof if every discrete subset can be covered by a Lindelof subspace. Juhasz et al. (Weakly linearly Lindelof monotonically normal spaces are Lindelof, preprint, arXiv:1610.04506 ) asked whether every almost discretely Lindelof first-countable Hausdorff space has cardinality at most continuum. We prove that this is the case under $$2^{<{\mathfrak {c}}}={\mathfrak {c}}$$ (which is a consequence of Martin’s Axiom, for example) and for Urysohn spaces in ZFC, thus improving a result by Juhasz et al. (First-countable and almost discretely Lindelof $$T_3$$ spaces have cardinality at most continuum, preprint, arXiv:1612.06651 ). We conclude with a few rel…

Discrete mathematicsCardinal inequality Lindelof space Arhangel’skii Theorem elementary submodel left-separated discrete set free sequence.General Mathematics010102 general mathematicsHausdorff spaceGeneral Topology (math.GN)Mathematics::General TopologyMonotonic functionSpace (mathematics)01 natural sciences010101 applied mathematicsMathematics::LogicCardinalityLindelöf spaceFOS: MathematicsSettore MAT/03 - GeometriaContinuum (set theory)0101 mathematicsSubspace topologyAxiomMathematics - General TopologyMathematics
researchProduct

A short proof of a theorem of Juhasz

2011

Abstract We give a simple proof of the increasing strengthening of Arhangelʼskii Theorem. Our proof naturally leads to a refinement of this result of Juhasz.

Discrete mathematicsMathematics::General TopologyFree sequenceAlgebraMathematics::LogicIncreasing unionSimple (abstract algebra)Settore MAT/03 - GeometriaElementary submodelGeometry and TopologyArhangel'skii TheoremMathematics::Symplectic GeometryArhangelʼskii TheoremMathematicsAnalytic proof
researchProduct

Increasing chains and discrete reflection of cardinality

2013

Combining ideas from two of our previous papers, we refine Arhangel'skii Theorem by proving a cardinal inequality of which this is a special case: any increasing union of strongly discretely Lindelof spaces with countable free sequences and countable pseudocharacter has cardinality at most continuum. We then give a partial positive answer to a problem of Alan Dow on reflection of cardinality by closures of discrete sets.

Arhangel’skii TheoremDiscrete setstrongly discretely LindelofSettore MAT/03 - Geometriafree sequenceelementary submodel
researchProduct